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Numerical simulations of periodic flow oscillations
in low Prandtl number fluids
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Abstract

The transition from steady to oscillatory flow for a very low Prandtl number fluid (Pr = 0.008) is computed for rect-
angular enclosures with aspect ratios (length/height) of 0.25, 0.4, 1.0, and 2.0 and are found to occur at Rayleigh num-
bers of 250,000, 130,000, 83,500, and 30,000 respectively. The structures of the oscillations are graphically depicted and
are manifested in corner cells which dissipate into centered cells and then into opposite corner cells. A secondary flow
transition is detected for a geometry with an aspect ratio of 1.0 at Ra = 1.2Rac2.
� 2004 Published by Elsevier Ltd.
1. Introduction

Natural convection in low Prandtl number fluids is
an extremely important phenomenon in several crystal
growth methods, such as the Bridgman [1–3] and Czo-
chralski [4,5] techniques, in which a melt is condensed
and solidifies into a single crystal. These techniques,
however, often suffer from the disadvantage that they
are adversely affected by fluid motion in the melt [6].
When the melt is heated from below, a density gradient
is established and the fluid may convect in the tradi-
tional Rayleigh–Bénard fashion [7,8]. The presence of
convection can significantly diminish the quality of the
crystal that is produced because of morphological and
compositional inhomogenities [9]; subsequently, studies
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of convection in its various forms have been a significant
area of research.

Flow dynamics is determined primarily by the Ray-
leigh number, which is the ratio of the buoyant to the
viscous effects and is defined as

Ra ¼ gbDTH 3

mj
; ð1Þ

where g is the gravitational acceleration, b is the thermal
expansion coefficient, DT is the temperature difference,
H is the fluid height, m is the kinematic viscosity, and j
is the thermal diffusivity. There are three important val-
ues of the Rayleigh number which demarcate different
flow bifurcations and are referred to as the first, second,
and third critical Rayleigh numbers—Rac1, Rac2, and
Rac3, indicating the transition to steady flow, oscillatory
flow, and turbulent flow. When the Rayleigh number is
below Rac1, all transport is through conduction and no
convection is present. As the Rayleigh number exceeds
Rac1, steady convection begins. This first critical
Rayleigh number does not depend on the fluid proper-
ties (i.e., the Prandtl number) and have been studied
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Nomenclature

C proportionality constant
f frequency
g gravitational acceleration
H fluid height
L length of a side being discretized (L = 1 for

a dimensionless formulation)
Nu Nusselt number
Pr Prandtl number
Ra Rayleigh number
v dimensionless velocity (scaled by m/H)
t dimensionless time (scaled by H2/m)
T dimensionless temperature (scaled by

(T � Tcold)/(Thot � Tcold))
T temperature at which the Boussinesq

approximation is taken (T ¼ 0:5)
DT temperature difference

Greek symbols

b thermal expansion coefficient
c aspect ratio (scaled to H)
j thermal diffusivity
m kinematic viscosity

Subscripts

c1 first critical Rayleigh number
c2 second critical Rayleigh number
c3 third critical Rayleigh number
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extensively by several authors using both linear stability
arguments [10–13] and numerical CFD codes [14,15].

When studying Rac2, however, many previous
numerical studies have been limited to two-dimensional
enclosures. For example, Ozoe and Hara [16] character-
ize the transition to periodic oscillations in fluids of Pr =
0.01 in two-dimensional rectangular enclosures of aspect
ratio (length/height) of 4.0 using a finite-difference meth-
od. Once convection begins, the calculated oscillations
manifested themselves in the form of multiple convec-
tion cells that deform as time progressed. They also con-
clude that the difference between the first and second
critical Rayleigh numbers decrease as the Prandtl num-
ber decreases. Two-dimensional studies of the transition
to oscillatory flow, however, often oversimplify the rich
convection which may be present, especially those in
rectangular enclosures, which are influenced by the pres-
ence of corners which in turn affect the flow patterns.
Three-dimensional convection cells, whether oscillatory
or not, often have vortices in the corners of the domains
[15], and this effect cannot be reproduced as well as with
two-dimensional algorithms; therefore a three-dimen-
sional numerical study is needed to properly determine
the second critical Rayleigh number.

One of the few three-dimensional numerical studies of
natural convection of low-Prandtl-number fluids was per-
formed by Neumann [17]. This study considered the natu-
ral convectionof low-Prandtl-number fluids (Pr = 0.02) in
vertical circular cylinders heated from below, in both stea-
dy and periodic oscillatory regimes. The results show that
in the steady regime,multiple steady states are possible un-
der similar conditions, dependingon the past history of the
fluid. This work did resolve the fundamental process of
oscillation in low Prandtl number liquids from that ob-
served in gases; namely, oscillations of gases in cylindrical
enclosures are accompanied by the rotation of the plane of
symmetry about the axis of the cylinder, while in liquids it
involves spatial changes in the flow structure.

In this study, the second critical Rayleigh numbers
will be computed numerically for liquid tin (Pr =
0.008). Tin is taken as the model fluid primarily because
it has an extremely low Prandtl number. Several
researchers [18–20], including the authors [21], are devel-
oping new techniques for detecting convection in crystal
growth. Such techniques must be tested and applied to
low Prandtl number fluids that are encountered in crys-
tal growth. This work is intended to provide a numerical
comparison for these studies, based on one of the lowest
Prandtl number fluids available.

The following rectangular aspect ratios are investi-
gated: 0.25, 0.4, 1.0, and 2.0. As mentioned earlier, the
presence of corners in rectangular enclosures is known
to add more complexity and three-dimensionality to
any buoyancy-driven flows [15], when compared with
cylindrical geometries. As experimental techniques for
detecting convection in low Prandtl number fluids are
developed, very robust tests will be required and the
corners in rectangular geometries will allow this.
2. Algorithm

A three-dimensional, finite-volume algorithm devel-
oped and tested previously [15] was used for all calcula-
tions. The following Boussinesq equations are solved

r �~v ¼ 0;
o~v
ot

þ~v � r~v ¼ �rp þr2~v� Ra
Pr

T � T
� �

~k;

Pr
oT
ot

þ~v � rT
� �

¼ r2T;

ð2Þ
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Fig. 1. Geometry and boundary conditions studied in this
work.
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where the scales for velocity, time, and temperature are
(m/H), (H2/m), (T � Tcold)/(Thot � Tcold) respectively, and
T is the temperature at which the Boussinesq properties
are taken, (T ¼ 0:5 in this study). The geometry and
boundary conditions are shown in Fig. 1. These equa-
tions are discretized in space with a piecewise linear pro-
file and discretized in time using a fully implicit scheme.
The velocity profiles were made to satisfy the continuity
equation using the SIMPLE pressure correction algo-
rithm (semi-implicit method of pressure linking equa-
tions). The calculations were taken as converged if the
difference between successive iterations scaled to the
final values was less than or equal to 10�9. For more
details into the specifics of the technique, readers are
referred to the book of Patankar [22], which details the
procedures.

When first critical Rayleigh numbers are calculated,
the specific value of Rac1 can be calculated through a
Nusselt number averaged over the active surfaces, not-
ing that Ra! Rac1 as Nu ! 1; there is, however, no
analogous test for the second critical Rayleigh number.
For this study, the second critical Rayleigh number
was isolated by noting the velocity components and
dimensionless temperature at a pre-selected point to
see if periodic oscillations develop. If, for that Rayleigh
number, no oscillations are detected, its velocity and
temperature results are used as initial guesses for the
next calculation, with an increased Rayleigh number.
This process in repeated until oscillations are detected,
and the lowest Rayleigh number at which oscillations
are detected is taken as the second critical Rayleigh
number. For some initial calculations, additional simu-
lations were performed for higher Ra, and the ampli-
tudes of the oscillations were noted, and the value of
Ra at which the amplitudes extrapolated to zero was
taken to be Rac2. This procedure, however, did not yield
Rac2 values that were statistically different from simple
trial and error, so it was not used afterwards.

For all calculations, a staggered grid structure was
used which placed more data points along the sides
and corners of the enclosure and less in the interior. This
was done to ensure resolution of side and corner effects
which are important in rectangular geometry studies. To
do this, the following equations were used to form the
grid:

X i ¼ X i�1 þ X sin
ip

N þ 1

� �
; ð3Þ

where X indicates the grid point, N is the number of grid
points in the appropriate direction, the subscript i indi-
cates the desired grid point and i � 1 is the location of
the previous grid point. The function X is defined as

X ¼ LPN
i¼1 sin

ip
Nþ1

� � ; ð4Þ

where L is the length of the side being discretized. Eqs.
(3) and (4) allow additional grid points to be placed at
the periphery of the enclosure to allow greater resolution
of the corner effects.

Different mesh sizes were used for different aspect
ratios, and are given as each aspect ratio is presented
in Section 3. As the Rac2 calculations began for a given
aspect ratio, the converged steady (Rac1) profile was
used as the initial guess, and the Rac2 calculation
proceeded as indicated before. Therefore, the same mesh
sizing was used for the Rac1 and Rac2 profiles. The
meshes that were actually chosen in the Rac1 calculation
were the finest that could be used in the computers avail-
able. No additional calculations with finer or coarser
grids were used.
3. Results and discussion

The results obtained for Rac1 and Rac2 are shown in
the stability diagram in Fig. 2. In this figure, the trend of
the computed Rac1 values agrees well with the linear sta-
bility results of Chandrasekhar [11] for an infinite aspect
ratio and Catton [10] for finite aspect ratios. The Rac1
results compare favorably with the numerical result of
Ozoe et al. [23]. The computed Rac2 values also compare
well with other calculations performed for similar prob-
lems. The Rac2 trend of this work, for example, is consis-
tent with the two-dimensional result of Ozoe and Hara
[16] for c = 3 and c = 4 (for Pr = 0.01) and the three-
dimensional work of Nakano et al. [24] for c = 5 and
Pr = 0.1.

The Rac2 results from this study can also be checked
against the theoretical predictions of Busse [25] who
predicts that as Pr ! 0, the frequency of oscillations
are related to the Rayleigh number through
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f ¼ C
Ra� Rac1

Rac1

� �1
2

; ð5Þ

where C is a constant. The flow profiles corresponding
to the Rac2 points in Fig. 2 will be detailed in a later sec-
tion; however, if their fundamental frequencies of oscil-
lation are calculated using a fast Fourier transform and
the results analyzed with a least squares regression, a lin-
ear fit with R2 = 0.97 and a slope of C = 0.0303 Hz is
obtained. This compares favorably with the experimen-
tal results of Mishra et al. [26] in which C = 0.022 Hz
is obtained.

As seen in Fig. 2, Rac2 does not appear to be as sen-
sitive to aspect ratio as Rac1. The physical explanation
for this is not obvious; it is hypothesized that since the
Rac1 transition involves the fluid overcoming the inertia
to a convective state means that the buoyancy leading to
this steady convection must build over the entire vertical
distance of the fluid geometry. Thus, the Rac1 transition
would depend more on this distance (i.e., c) than the
Rac2 transition. For the Rac2 transition, the fluid is al-
ready convecting and the result of the transition is sim-
ply to change the manner in which the fluid moves. This
Table 1
Summary of oscillatory convection results for Pr = 0.008

Aspect
ratio, c

Grid Calculated
Rac2

Comments about
oscillations

0.25 20 · 20 · 30 250,000 Center! corner! center
0.4 20 · 20 · 30 130,000 Center! corner! center.

Extremely subtle
1 25 · 25 · 25 83,500 Corner cells oscillation

between circular- and
cigar-shaped. Very subtle

2 30 · 30 · 20 30,000 Not periodic oscillations
would have less to do with geometry than the original
Rac1 transition.

The results obtained for each individual aspect ratio
are summarized in Table 1 and are detailed in the next
sections. The validity of the results to be presented can
be substantiated quantitatively by the Busse test out-
lined above. Additionally, qualitative substantiation is
provided by noting that that oscillations in low Prandtl
number fluids are expected to be oscillations of the con-
vective cell shape as opposed to periodic changes in the
velocity direction and/or magnitude [17]. In the results
that follow, the former is observed.

3.1. c = 0.25

Simulations carried out for c = 0.25 in the supercrit-
ical Rayleigh number regime captured some of the rich
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Fig. 3. Periodic oscillations for Ra = 250,000 and c = 0.25: (a)
dimensionless velocity and (b) dimensionless temperature. The
tracking point is in the center is the container at the grid point
nearest to 10% of the distance from the bottom.



Fig. 4. Flow evolution of oscillatory flow with Ra = 400,000, Pr = 0.008, c = 0.25. The time step is 2.5 · 10�4 in dimensionless units.
If the fluid height is assumed to be 1.5 cm, this corresponds to a time step of 0.25 s.
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dynamics of oscillatory flow in low-Prandtl-number flu-
ids. Using a 20 · 20 · 30 rectangular grid, oscillatory
convection starts at a Rayleigh number (Rac2) of
250,000, which is relatively close to the first critical
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Rayleigh number (Rac1 = 200,000), a result observed
experimentally by Müller et al. [27] for liquid gallium
in tall cylindrical enclosures. Fig. 3 shows the oscillatory
nature of this flow using a time step of 5 · 10�5 in
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D.W. Crunkleton et al. / International Journal of Heat and Mass Transfer 49 (2006) 427–438 433
dimensionless units at a point in the center of the flow at
the grid point nearest to 10% of the vertical distance
from the bottom.

To visualize the intricacies of the flow oscillations,
Fig. 4 shows the oscillatory patterns the fluid makes in
the x–z plane with a time step of 2.5 · 10�4. (If a fluid
height of 1.5 cm is assumed, this corresponds to a time
step of 0.34 s.) In the first three frames, there is not as
much change in the overall flow pattern as in the final
three. The changes that do occur are manifested in the
velocity magnitudes, and in the bottom-left cell which
becomes slightly more circular. Additionally, the cell in
the top right of the domain moves upward slightly and
becomes more compact in frame (c). Also in frame (c),
a large cell in the center of the flow field begins to form.
In frame (d), the cell formed in the center is evident, and
in (e), it dominates the flow field, with only a secondary
vortex in the lower left corner. Finally, in frame (f), the
center cell has divided into two smaller cells—in the
upper left and bottom right, approximately a mirror-
image of frame (a). In general, the oscillations can be
thought of as a series of the following steps:

1. Begin with two cells in opposite corners.
2. Slowly transform the corner cells to a single, central

vortex that is diagonally skewed.
3. Quickly transform the center cell into two cells in the

opposite corners of (1).
4. Repeat.

It should be mentioned that the orthogonal (yz) plane
was also similarly analyzed and flow oscillations were
manifested through a single, diagonally skewed cell
whose diameter oscillates. This flow structure, however,
could not be easily visualized in a two dimensional graph
because the magnitude of these oscillations were small.

The structure of the oscillations for the first quasi-
steady state profile in Fig. 4 is shown in Fig. 5. The cel-
lular pattern is obvious; yet it is also clear that the flow
streamline is highly three-dimensional (and does not
close). The flow pattern is actually more helical than it
is cellular.
3.2. c = 0.4

Using the converged Rac1 profiles for this aspect ratio
as an initial guess and a 20 · 20 · 30 grid, a Rac2 value of
130,000 was obtained and the resulting velocity and tem-
perature oscillations for this Rayleigh number are shown
in Fig. 6. As seen in this figure, the behavior of the veloc-
ity components is much more complex than those for
c = 0.25, while the temperature oscillations are much
simpler. For c = 0.25, the x-component of velocity
(i.e., u) dominated the oscillations, while for c = 0.4,
the y-component (i.e., v) is greater.
A macroscopic flow pattern of these oscillations was
constructed and is shown in Fig. 7. Both the magnitude
of the flow velocity and the translation of the convective
cells in the domain occurred over shorter time scales
than for c = 0.4 than for c = 0.25. For this reason, the
individual frames in Fig. 7 are for a finer time spacing
of 4 · 10�5 (if H = 1.5 cm, this corresponds to 0.06 s).
The flow begins in (a) with two nearly circular cells in
the bottom right and upper left, with a smaller, cigar-
shaped cell in the bottom left. There is a larger cell, diag-
onally skewed near the center of the domain. As frame
(b) is reached, the lower right cell has shrunk, while the
lower left has grown, although their circular and cigar
shape has been preserved. The formation of the center cell
has completed and is now vertical in the domain. The
upper left cell has shrunk and the beginning of an upper
right cell is evident. In frame (c), the upper right cell for-
mation has completed, and on the lower left boundary, a
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large cell with a much smaller vortex on the right is seen.
Frames (d), (e), and (f) are practically mirror images of
(a), (b), and (c). The results obtained from c = 0.25 and
c = 0.4 suggest flow oscillations for these geometries
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manifest themselves in low-Prandtl-number fluids in the
same qualitative pattern—by the shifting of corner vorti-
ces, to a centered cells, and then to vortices in the opposite
the corners.

3.3. c = 1.0

The second critical Rayleigh number for an enclosure
with an aspect ratio of 1.0 and a 25 · 25 · 25 grid, was
determined to be 83,500. A trace of the velocity compo-
nents and dimensionless temperature for Ra = 85,000
are shown in Fig. 8, showing definite periodicity. When
analyzing the macroscopic nature of this flow configura-
tion, changes of the cellular structure were confined to
the corners of the domain and oscillate between a circu-
lar and a cigar-shaped configuration. This effect is very
subtle and cannot be easily visualized in a manner sim-
ilar to Figs. 4 or 7.
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Although a macroscopic analysis of the flow oscilla-
tions was not possible for this aspect ratio, an interesting
phenomenon was observed when the Rayleigh number is
increased even further beyond Rac2 that was not ob-
served for the smaller aspect ratio enclosures. If, for
c = 1.0, the Rayleigh number is increased beyond Rac2
(as seen in Fig. 9a through d), a secondary transition
is observed beginning at Ra = 100,000. Additionally, if
the fundamental frequencies of oscillation for Ra =
85,000 and Ra = 100,000 are calculated using the fast
Fourier transform, the fundamental frequency shifts
for all velocity components. The amount of this shift
is approximately constant for all velocity components,
at a value of 0.036 Hz (assuming a fluid height of
1.5 cm). As far as the authors are aware, this secondary
oscillation has not been observed in previous experimen-
tal or computational studies and experiments are under-
way to verify these observations.
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Fig. 9. Development of secondary oscillations in Ra = 100,000, c = 1.0: (a) X-component, (b) Y = component, (c) Z-component and
(d) dimensionless temperature.
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3.4. c = 2.0

Using the steady-state velocity and temperature pro-
files for the Rac1 previously determined to be 1800, and
with a 30 · 30 · 20 grid, oscillations for this aspect ratio
began at a Rac2 of 30,000. Fig. 10 shows the oscillations
that were detected; however, these oscillations, unlike
those of lower aspect ratios, were not periodic. Several
modifications to the relaxation parameters of the algo-
rithm were made, but the same result was obtained. A
similar non-periodic oscillations was observed computa-
tionally by Ozoe and Hara [16] for two-dimensional
calculations.
4. Summary

The following second critical Rayleigh numbers were
obtained for a fluid with Pr = 0.008: 250,000 for
c = 0.25; 130,000 for c = 0.4; 83,000 for c = 1.0; and
3000 for c = 2.0. For the c = 0.25 and 0.4 cases, the
flows oscillate by corner cells moving back and forth
across the xz plane. For c = 1.0, corner cells changed
from circular to cigar shaped, but in a very subtle fash-
ion. For c = 1.0 and Ra = 1.2Rac2, a secondary transi-
tion was observed that slightly deformed the shape of
the oscillations and changed the fundamental frequency
of oscillation by 0.036 Hz. Finally, non-periodic flows
were observed for c = 2.0. All computed results obtained
compared favorably with previous experiments using a
mathematical test developed by Busse [25].
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